
RSE2107A - Lecture 3
Introduction to common development tools & foundations of mobile robots



Git Basics
01

Introduction to Ground 
Robots

02

Agenda

Project Management
Fundamentals

03



LIMO Fix
04

Kickstarter
05

Agenda

Project Update
06



LIMO Diagnosis

• What happened:
➢ Plug the 12V 

charger to the 
5V port of 
NANO

➢ The Nano board 
cannot start

➢ Producing 3-
beeps



➢ Read manual completely before operation

➢ For electrical & electronics: shape matching 

doesn't mean compatible

➢ Don’t debug hardware without tools

➢ Try not to debug system in front of

“customers” (except common steps)

➢ NEVER Point Fingers



LIMO Diagnosis

• Step 1: Isolate the issues

• Step 2: Reproduce the 
result (be careful of the 
cost, avoid further 
damage)

• Step 3: Identify the root 
cause (TVSD)

• Step 4: Apply the fixes 
(total cost: SGD7,860 to 
fix the two LIMOs)

https://www.digikey.sg/en/products/detail/littelfuse-

inc/SMAJ5-0A/762250

https://www.digikey.sg/en/products/detail/littelfuse-inc/SMAJ5-0A/762250




About Kickstarter (e.g., Robots）

❑ Cool ideas
❑ Solving a real pain point
❑ Confident for delivery



https://www.kickstarter.com/projects/248735162/luba-perimeter-wire-free-robot-lawn-mower?ref=discovery&term=robot


Terminal 1 Terminal 2 Terminal 3

Terminal 4 Jewel

Super MarketFood CourtCrowne Plaza







Schedule
❑ First draft by 5/6
❑ Feedback to you by 8/6
❑ Second Iteration by 12/6
❑ Feedback to you by 15/6
❑ Design freezes by 19/6
❑ Mat received before 15/7 

❑ Make sure your decoration items are completed 
within this month



Remarks
❑ Work as a big team (daily communication)
❑ Please use fusion 360 (free for students)
❑ Please make two copies for each of your 

decoration
❑ Please mind your budget
❑ Be cool



Version Control
chaos vs controlled chaos



What is version control?

● Version control (aka 

source control), is the 

practice of tracking and 

managing changes to a 

codebase.

● Easy to understand, 

difficult to practice.



Version Control Systems

● Version control systems are tools that aims to simplify the process by 

taking over the task of maintaining a complete history of changes to a 

codebase.

● Git is one such system, a free and open source distributed version 

control system originally developed in 2005 and one of the most 

commonly used systems today.



Git? GitHub/Gitlab?

● GitHub is an online service to which developers who use Git can 

connect and upload or download resources.



Git(hub) Basics



Git Projects & Repositories

● A Git project is a folder of software and other resources that is 

tracked by Git.

● A Git repository tracks and maintains the history of all changes made 

to the files within a Git project and saves this data into a “.git” folder 

(aka the repository folder).



Git History

● Git stores the history of a project by keeping 

a snapshot (aka a commit) throughout the 

project’s life, each building on another earlier 

commit.

● These commits (identified by a unique id (aka 

hash)), together form a complete change 

history (or graph) for the given project. 



A file’s Lifecycle

● From creation to deletion, a file in any git project will go through 

multiple stages throughout the lifespan of the project.

● These stages are what Git uses to track, control and maintain its 

change history and a user can control which stage a file/change is in.



Stage - Untracked

● Files that did not exist in the previous commit and has not 

been added to the git repository yet.

○ Typically newly created files

○ Files that have been explicitly removed or ignored 

from the history.

● Git won’t start tracking the file (again) unless told explicitly 

to.



Stage - Unmodified

● Files that have been previously committed and have not 

been changed since the last commit.



Stage - Modified

● Files that have been previously committed and have been 

changed since the last commit.



Stage - Staged

● Files that are being prepared to be committed

○ Only Untracked & Modified files can be staged.

○ These files will be compared to their state in the previous 

commit and there changes tracked.

● Once these files have been committed to the history, they 

return to being Unmodified files.



Local vs Remote Repositories

● Local

○ Repositories that resides on a developer’s computer.

○ Often the one being worked on.

○ Almost certainly necessary in any Git project

● Remote

○ Repositories resides on a remote computer/server (like GitHub’s) .

○ Often used to share/collaborate on a codebase.

○ Not strictly necessary



Developer A Developer B



Common Git 
commands



git init

● Turns a directory (and all its sub-directories) into an empty Git 
repository



git add

● Adds files to staging area



git commit

● Record changes made to staged files into a commit in the local 
repository



git status

● Returns the current state of the repository



git config

● Assigning/Removing/Changing Git configurations and settings.



git branch

● Determine what branch local repository is on, adding, viewing and 
deleting branches



Branching

● If we view the git history as a timeline, branching like the name 
suggests creates an “alternate” history where we can make 
changes to the code without affecting the main history.

● This “alternate” timelines can be merged back into the main 
history, maintained separately or even pruned.



git checkout

● Switch to work in a different branch (for switching between branches)



Developer A Developer B



git clone

● Create a local working copy from an existing remote repository



git fetch

● Checks for any new commits from a remote repository (but does not 
get these changes).



git pull

● Getting latest branch version/changes/history from a remote 
repository branch



git push

● Sends local commits to the remote repository (updating remote 
repository with all commits done)



Developer A Developer B



Managing conflicts

When dealing with multiple merge requests from different collaborators within the 

same repository (typically a shared remote one), you are likely to encounter merge 

conflicts.

• e.g. Member A and B both made their own changes to the same file.

• Git needs to know which code/change to use, which results in a merge 

conflict 

• Conflict will need to be resolved before being able to merge successfully

• Needs to be resolved by whoever is doing the merging



Important tools for GitHub

• Markdown

• Lightweight markup language used to add or format elements to 

plain-text markup language

• Portable across different platforms (Windows, Mac, Linux, …)

• Supported on GitHub

• Link to cheatsheet for Markdown

• https://www.markdownguide.org/cheat-sheet/

https://www.markdownguide.org/cheat-sheet/


Important tools for GitHub

Markdown 

syntax

How it will 

look like



Introduction to Ground 
Robot



Robot Locomotion

• Type of motions

• Ackerman

• Differential

• Tracked

• Omni Drive



Types of mode



Types of mode



Representing robot position

• Reference frames are with respect to a 

body that can be used to describe the 

position of points with respect to the body’s

coordinate system(frame).

• Local reference frame refers to the 

coordinate system of the robot (body).

• Global reference frame refers to the 

coordinate system of the area that the 

robot is functioning within. 

Local reference 

frame

Global 

reference frame



Representing robot position

• Orthogonal rotation matrix, R(θ)

• Used to map vectors expressed in 

global frame (XW , YW , ZW) to that of 

local reference frame (Xr , Yr , Zr).

• Given position of robot in global 

reference frame: ξW = [x,y,θ]T

• Position of robot expressed in local 

frame: ξW=R(θ) x ξr .



Project Management



Company Wide (not Execution)

• Start with pre-LTS (long-term strategical plan), LTS

• Often conducted by industrial experts with lots of market study

• Why?/What?

• Resources

• Roadmap

• For Execution:

• Pre-launch (Dev. Lead, PM, QE, Supply Chain Management)

• Beta users

• 4P: Product/Price/Place/People

• Launch (Direct launch? Kickstarter? KOL?)

• Post-launch

• Feedback

• Roadmap adjustment (minor)



Team-Level Execution (Development)

• Keep team members below 9 ppl (5-9 are most effective)

• A team leader (help get the resources)

• A technical leader

• Roadmap + Backlog + Sprint

• Roadmap: critical milestones to achieve

• Milestones with tasks and subtasks

• Quantifiable and trackable

• Backlog

• Tasks popped up: Technical support/Bug fixes/Enhancement (new features)

• Sprint

• A time interval during which tasks in the roadmap and backlog must be completed

• Resources must be allocated to complete the tasks

• A consensus (no excuses to fail) 



Team-Level Execution: Tools



Team-Level Execution (Development)
Example (at Weston Robot):

1. Development Project Management: Jira

2. Internal Communication: Slack

3. Internal File Storage: OneDrive

4. Internal Document Writing: Yuque

5. Code Hosting: GitHub (public) and Gitlab (private)

6. Sales/Marketing Management: SalesMate

7. Sales/Marketing Task Management: Teambition



Lab 3

• Prelab and lab notes will be released today.



END


